Name \qquad
Block \qquad

Two-Column Proof Practice

Mark the given information on the diagram! Choose a statement and a reason for each step in the two-column proof from the list below each proof.

1) Given: $\overline{M N} \| \overline{P O}, \angle M \cong \angle O$

Prove: $\overline{M P} \| \overline{N O}$

Statement	Reason
1.	1.
2.	2.
3.	3.
4.	4.

Choose Statements and Reasons from this list:
$\angle M$ and $\angle P$ are supplementary
$\overline{M N} \| \overline{P O}, \angle M \cong \angle O$
same-side int \angle 's supp. $\rightarrow \|$ lines
$\overline{M P} \| \overline{N O}$

Il lines \rightarrow same-side int \angle 's supp.
Substitution

Given

$\angle O$ and $\angle P$ are supplementary
2) Given: k II l

Prove: $\angle 1$ is supplementary to $\angle 7$

Statement	Reason
1.	1.
2.	2.
3.	3.
4.	4.

Choose Statements and Reasons from this list:

$\angle 4 \cong \angle 7$
Substitution
k II l
II lines \rightarrow same side int \angle 's supp.

Given
$\angle 1$ is supplementary to $\angle 4$
Vertical angles congruent
$\angle 1$ is supplementary to $\angle 7$
3) Given: $\angle 3 \cong \angle 2$

Prove: $\angle 4$ is supplementary to $\angle 5$

Statement	Reason
1.	1.
2.	2.
3.	3.
4.	4.
5.	5.

Choose Statements and Reasons from this list:

Substitution
Given
$\angle 4$ is supplementary to $\angle 3$
Def of Linear Pair
$\angle 3 \cong \angle 5$
$\angle 4$ is supplementary to $\angle 5$
$\angle 3 \cong \angle 2$
Vertical angles congruent
$\angle 2 \cong \angle 5$
Substitution
4) Given: a Il $b, \angle 2 \cong \angle 3$

Prove: c Il d

Statement	Reason
1.	1.
2.	2.
3.	3.
4.	4.

Choose Statements and Reasons from this list:

Substitution

$a \| b, \angle 2 \cong \angle 3$
II lines \rightarrow corr. \angle 's \cong
Given
$\angle 1 \cong \angle 2$
$c \| d$
alt. int. \angle 's $\cong \rightarrow \|$ lines
$\angle 1 \cong \angle 3$
5) Given: $\overline{A B} \cong \overline{C D}, \overline{A C} \cong \overline{D B}$

Prove: $\triangle \mathrm{ABC} \cong \triangle \mathrm{DCB}$

Statement	Reason
1.	1.
2.	2.
3.	3.

Choose Statements and Reasons from this list:

$\overline{B C} \cong \overline{B C}$
Reflexive Property
SSS Congruence Postulate
$\overline{A B} \cong \overline{C D}, \overline{A C} \cong \overline{D B}$
$\triangle \mathrm{ABC} \cong \triangle \mathrm{DCB}$
Given
6) Given: $\overline{F G} \| \overline{K L}, \overline{F G} \cong \overline{K L}$

Prove: \triangle FGK $\cong \Delta$ KLF

Statement	Reason
1.	1.
2.	2.
3.	3.
4.	4.

Choose Statements and Reasons from this list:

Reflexive Property
$\overline{F K} \cong \overline{F K}$
Given
Il lines \rightarrow alt. int. \angle 's \cong
$\angle \mathrm{FKL} \cong \angle \mathrm{KFG}$
$\overline{F G} \| \overline{K L}, \overline{F G} \cong \overline{K L}$
SAS Congruence Postulate
$\Delta \mathrm{FGK} \cong \Delta \mathrm{KLF}$
7) Given: X is the midpoint of $\overline{A G}$.

X is the midpoint of $\overline{N R}$.
Prove: $\triangle \mathrm{ANX} \cong \triangle \mathrm{GRX}$

Statement	Reason
1.	1.
2.	2.
3.	3.
4.	4.

Choose Statements and Reasons from this list:

X is the midpoint of $\overline{A G}$; X is the midpoint of $\overline{N R}$
Definition of a Midpoint
SAS Congruence Theorem
Given

Vertical Angles Theorem
AX = GX; NX = RX
$\angle \mathrm{AXN} \cong \angle \mathrm{GXR}$
$\Delta \mathrm{ANX} \cong \Delta \mathrm{GRX}$
8) Given: $\overline{A B} \cong \overline{C D}, \overline{A B} \| \overline{C D}$

Prove: $\triangle \mathrm{ABC} \cong \triangle \mathrm{CDA}$

Statement	Reason
1.	1.
2.	2.
3.	3.
4.	4.

Choose Statements and Reasons from this list:

II lines \rightarrow alt. int. \angle 's \cong
Given
$\overline{A B} \cong \overline{C D}, \overline{A B} \| \overline{C D}$
Reflexive Property

SAS Congruence Postulate
$\overline{A C} \cong \overline{A C}$
$\angle 1 \cong \angle 2$
$\Delta \mathrm{ABC} \cong \Delta \mathrm{CDA}$
9) Given: $\overline{P T} \cong \overline{R T}, \overline{Q T} \cong \overline{S T}$

Prove: $\triangle \mathrm{PQT} \cong \Delta \mathrm{RST}$

Statement	Reason
1.	1.
2.	2.
3.	3.

Choose Statements and Reasons from this list:
$\Delta \mathrm{PQT} \cong \Delta \mathrm{RST}$
Vertical Angles Theorem
SAS Congruence Theorem

$$
\overline{P T} \cong \overline{R T}, \overline{Q T} \cong \overline{S T}
$$

Given
$\angle \mathrm{PTQ} \cong \angle \mathrm{RTS}$
10) Given: $\overline{A C} \cong \overline{B C}$, M is the midpoint of $\overline{A B}$ Prove: $\triangle \mathrm{ACM} \cong \triangle \mathrm{BCM}$

Statement	Reason
1.	1.
2.	2.
3.	3.
4.	4.

Choose Statements and Reasons from this list:
$\overline{A M} \cong \overline{B M}$
$\Delta \mathrm{ACM} \cong \Delta \mathrm{BCM}$
Definition of a midpoint
Given
SSS Congruence Postulate
$\overline{A C} \cong \overline{B C}, \mathrm{M}$ is the midpoint of $\overline{A B}$
Reflexive Property
$\overline{C M} \cong \overline{C M}$
11) Given: $\overline{F H} \| \overline{L K}, \overline{G F} \cong \overline{G L}$

Prove: $\triangle \mathrm{FGH} \cong \Delta \mathrm{LGK}$

Statement	Reason
1.	1.
2.	2.
3.	3.
4.	4.

Choose Statements and Reasons from this list:
$\angle \mathrm{FGH} \cong \angle \mathrm{LGK}$
Given
$\overline{F H} \| \overline{L K}, \overline{G F} \cong \overline{G L}$
Vertical Angles Theorem

AAS Congruence Postulate
II lines \rightarrow alt. int. \angle 's \cong
$\angle \mathrm{K} \cong \angle \mathrm{H}$
$\Delta \mathrm{FGH} \cong \Delta \mathrm{LGK}$
12) Given: $\overline{V X} \cong \overline{X Y}, \overline{X W} \cong \overline{Y Z}, \overline{X W} \| \overline{Y Z}$ Prove: $\triangle \mathrm{VXW} \cong \Delta \mathrm{XYZ}$

Statement	Reason
1.	1.
2.	2.
3.	3.

Choose Statements and Reasons from this list:

$\angle \mathrm{VXW} \cong \angle \mathrm{VYZ}$
Given
$\Delta \mathrm{VXW} \cong \Delta \mathrm{XYZ}$

$$
\overline{V X} \cong \overline{X Y}, \overline{X W} \cong \overline{Y Z}, \overline{X W} \| \overline{Y Z}
$$

SAS Congruence Postulate
II lines \rightarrow corr. \angle 's \cong
13) Given: B is the midpoint of $\overline{A D}, \angle \mathrm{C} \cong \angle \mathrm{E}, \overline{B C} \| \overline{D E}$ Prove: $\angle \mathrm{BAC} \cong \angle \mathrm{DBE}$

Statement	Reason
1.	1.
2.	2.
3.	3.
4.	4.
5.	5.

Choose Statements and Reasons from this list:

II lines \rightarrow corr. \angle 's \cong
$\cong \Delta$'s $\rightarrow \cong$ parts
$\angle \mathrm{BAC} \cong \angle \mathrm{DBE}$
$\overline{A B} \cong \overline{B D}$
AAS Congruence Postulate
$\Delta \mathrm{TQS} \cong \Delta \mathrm{RSQ}$
B is the midpoint of $\overline{A D}, \angle \mathrm{C} \cong \angle \mathrm{E}, \overline{B C} \| \overline{D E}$
Definition of a midpoint
Given
$\angle \mathrm{EDB} \cong \angle \mathrm{CBA}$

