Name	

Block

Two-Column Proof Practice

Mark the given information on the diagram! Choose a statement and a reason for each step in the two-column proof from the list below each proof.

1) Given: $\overline{MN} \parallel \overline{PO}$, $\angle M \cong \angle O$ Prove: $\overline{MP} \parallel \overline{NO}$

Statement	Reason
1.	1.
2.	2.
3.	3.
4.	4.

Choose Statements and Reasons from this list:

 $\angle M$ and $\angle P$ are supplementary $\overline{MN} \parallel \overline{PO}, \ \angle M \cong \angle O$ same-side int \angle 's supp. $\rightarrow \parallel$ lines $\overline{MP} \parallel \overline{NO}$ If lines \rightarrow same-side int \angle 's supp. Substitution Given $\angle O$ and $\angle P$ are supplementary

2) Given: $k \parallel l$ Prove: $\angle 1$ is supplementary to $\angle 7$

	I I
Statement	Reason
1.	1.
2.	2.
3.	3.
4.	4.

Choose Statements and Reasons from this list:

 $\angle 4 \cong \angle 7$ Substitution $k \parallel l$ \parallel lines \rightarrow same side int \angle 's supp. Given $\angle 1$ is supplementary to $\angle 4$ Vertical angles congruent $\angle 1$ is supplementary to $\angle 7$

3) Given: $\angle 3 \cong \angle 2$ Prove: $\angle 4$ is supplementary to $\angle 5$

Statement	Reason
1.	1.
2.	2.
3.	3.
4.	4.
5.	5.

Choose Statements and Reasons from this list:

Substitution Given $\angle 4$ is supplementary to $\angle 3$ Def of Linear Pair $\angle 3 \cong \angle 5$ $\angle 4$ is supplementary to $\angle 5$ $\angle 3 \cong \angle 2$ Vertical angles congruent $\angle 2 \cong \angle 5$ Substitution

4) Given: $a \parallel b, \angle 2 \cong \angle 3$ Prove: $c \parallel d$

Statement	Reason
1.	1.
2.	2.
3.	3.
4.	4.

Choose Statements and Reasons from this list:

Substitution	$\angle 1 \cong \angle 2$
$a \parallel b, \angle 2 \cong \angle 3$	$c \parallel d$
Il lines → corr. ∠ 's \cong	alt. int. \angle 's $\cong \rightarrow \parallel$ lines
Given	$\angle 1 \cong \angle 3$

5) Given: $\overline{AB} \cong \overline{CD}$, $\overline{AC} \cong \overline{DB}$ Prove: $\triangle ABC \cong \triangle DCB$

Statement	Reason
1.	1.
2.	2.
3.	3.

Choose Statements and Reasons from this list:

 $\overline{BC} \cong \overline{BC}$ Reflexive Property SSS Congruence Postulate $\overline{AB} \cong \overline{CD}, \ \overline{AC} \cong \overline{DB}$ $\Delta ABC \cong \Delta DCB$ Given

6) Given: $\overline{FG} \parallel \overline{KL}$, $\overline{FG} \cong \overline{KL}$ Prove: $\Delta FGK \cong \Delta KLF$

	L K
Statement	Reason
1.	1.
2.	2.
3.	3.
4.	4.

Choose Statements and Reasons from this list:

Reflexive Property $\overline{FK} \cong \overline{FK}$ Given Il lines \rightarrow alt. int. \angle 's \cong $\frac{\angle FKL \cong \angle KFG}{FG} \parallel \overline{KL}, \ \overline{FG} \cong \overline{KL}$ SAS Congruence Postulate $\Delta FGK \cong \Delta KLF$

т

7) Given: X is the midpoint of \overline{AG} . X is the midpoint of \overline{NR} . Prove: $\Delta ANX \cong \Delta GRX$

Statement	Reason
1.	1.
2.	2.
3.	3.
4.	4.

Choose Statements and Reasons from this list:

X is the midpoint of \overline{AG} ; X is the midpoint of \overline{NR} Definition of a Midpoint SAS Congruence Theorem Vertical Angles Theorem

Given AX = GX; NX = RX $\angle AXN \cong \angle GXR$ $\triangle ANX \cong \triangle GRX$ 8) Given: $\overline{AB} \cong \overline{CD}$, $\overline{AB} \parallel \overline{CD}$ Prove: $\triangle ABC \cong \triangle CDA$

Statement	Reason
1.	1.
2.	2.
3.	3.
4.	4.

Choose Statements and Reasons from this list:

SAS Congruence Postulate $\overline{AC} \cong \overline{AC}$ $\angle 1 \cong \angle 2$ $\triangle ABC \cong \triangle CDA$

9) Given: $PT \cong RT$, $QT \cong ST$
Prove: $\triangle PQT \cong \triangle RST$

Statement	Reason
1.	1.
2.	2.
3.	3.

Choose Statements and Reasons from this list:

 $\Delta PQT \cong \Delta RST$ Vertical Angles Theorem SAS Congruence Theorem $\overline{PT} \cong \overline{RT} , \ \overline{QT} \cong \overline{ST}$ Given $\angle PTQ \cong \angle RTS$

10) Given: $\overline{AC} \cong \overline{BC}$, M is the midpoint of \overline{AB} Prove: $\triangle ACM \cong \triangle BCM$

Statement	Reason
1.	1.
2.	2.
3.	3.
4.	4.

Choose Statements and Reasons from this list:

 $\overline{AM} \cong \overline{BM}$ $\Delta ACM \cong \Delta BCM$ Definition of a midpoint Given SSS Congruence Postulate $\overline{AC} \cong \overline{BC}$, M is the midpoint of \overline{AB} Reflexive Property $\overline{CM} \cong \overline{CM}$

Choose Statements and Reasons from this list:

 \angle FGH $\cong \angle$ LGK Given $\overline{FH} \parallel \overline{LK}, \ \overline{GF} \cong \overline{GL}$ Vertical Angles Theorem AAS Congruence Postulate || lines \rightarrow alt. int. \angle 's \cong \angle K \cong \angle H \triangle FGH \cong \triangle LGK

12) Given: $\overline{VX} \cong \overline{XY}$, $\overline{XW} \cong \overline{YZ}$, $\overline{XW} \parallel \overline{YZ}$ Prove: $\Delta VXW \cong \Delta XYZ$

Statement	Reason
1.	1.
2.	2.
3.	3.

Choose Statements and Reasons from this list:

 $\angle VXW \cong \angle VYZ$ Given $\Delta VXW \cong \Delta XYZ$ $\overline{VX} \cong \overline{XY}$, $\overline{XW} \cong \overline{YZ}$, $\overline{XW} \parallel \overline{YZ}$ SAS Congruence Postulate Il lines $\rightarrow \text{ corr. } \angle \text{'s} \cong$

13) Given: B is the midpoint of \overline{AD} , $\angle C \cong \angle E$, $\overline{BC} \parallel \overline{DE}$ Prove: $\angle BAC \cong \angle DBE$

Statement	Reason
1.	1.
2.	2.
3.	3.
4.	4.
5.	5.

Choose Statements and Reasons from this list:

Il lines → corr. ∠'s ≅ $\cong \Delta$'s → \cong parts $\angle BAC \cong \angle DBE$ $\overline{AB} \cong \overline{BD}$ AAS Congruence Postulate $\Delta TQS \cong \Delta RSQ$ B is the midpoint of \overline{AD} , $\angle C \cong \angle E$, $\overline{BC} \parallel \overline{DE}$ Definition of a midpoint Given $\angle EDB \cong \angle CBA$